Aunque ciertos conceptos clave para el plano cartesiano se encuentran en obras tan antiguas como en la antigua Grecia, los académicos atribuyen a Rene Descartes el concepto crítico de aplicar álgebra a la geometría. Descartes introdujo la noción de aritmetizar geometría analítica asignando coordenadas a dos puntos en un plano. Después de que Descartes publicó sus teorías, otros matemáticos comenzaron inmediatamente a expandir sus ideas y desarrollar el plano cartesiano.
Apolonio de Grecia encontró formas rudimentarias para resolver problemas geométricos, y la clériga francesa Nicole Oresme, del siglo XIV, utilizó sistemas similares a las coordenadas cartesianas. Sin embargo, no fue hasta René Descartes en 1637, que la geometría euclidiana y el álgebra se unieron por fin.
Los eruditos nombraron el sistema de coordenadas después de Descartes; sin embargo, muchas de las características del plano cartesiano moderno fueron adiciones de matemáticos posteriores. Descartes solo trabajó con el eje x y en el primer cuadrante; Hasta ese momento, los conceptos de cero y números negativos no eran comunes.
Fue Isaac Newton quien primero fue más allá del uso de distancias positivas. En su publicación "Enumeraciones de curvas de tercer grado", Newton fue pionero en el uso de ejes perpendiculares que incluían números positivos y negativos. Incluso estableció el precedente de usar x para etiquetar el eje horizontal, y para el eje vertical y 0 para la intersección.